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Fig. 10. RF power for the mjection-locked case (Jy, = 646 A/cm?, r =8 ps,
I;=0341 A, P, =1.5W and f, =10 GHz).

RF power generated by the diode is
Pre=—3GpVir (7)

where G, =Re{Y,(Vyr)}. The expressions in (6) and (7) are
plotted in Fig, 9. It is seen that as I; is varied from 300 A /cm’
(039 A) to 800 A/cm’® (1.04 A), the RF power first increases,
reaches a maximum for I, =450 A/cm* (0.585 A), and then
decreases. ( Pxp in Fig. 9 is the RF power at the start of the pulse,
whereas the RF power in Table II is the average over the 1.5-ps
pulse width.) Below I, = 285 A/cm? (0.370 A, P,,=1.76 W), it is
anticipated from Fig. 9 that locking cannot occur except perhaps
at very low Py values. (It must also be investigated whether the
operating points in Fig. 9 are stable.) This expectation is borne
out by the simulation in Fig. 10 for which P, =1.5 W (I, = 0.341
A). The diode does not lock until it has heated up to 477°K, so
that the curves in Fig. 9 are no longer applicable. As the diode
continues to heat up, the generated RF power gradually increases
to 149 W. This behavior is consistent with the experimental
results, since for P,, much below 2 W the locking at 10 GHz was
not found to be stable.

VI." CONCLUSIONS

It has been shown that a large-signal IMPATT diode simula-
tion program employing the drift-diffusion approximation in
conjunction with a quasi-static transient simulation can accu-
rately predict experimentally observed behavior at 10 GHz, both
for the free-running and injection-locked cases. These programs
may be used for diode and circuit design at higher frequencies
where measurements become more difficult. However, it may be
necessary to include relaxation effects in the IMPATT diode
simulation since it has been shown that these effects become
significant at low millimeter-wave frequencies [7].
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Spectral Domain Analysis of an Elliptic Microstrip
Ring Resonator

ARVIND K. SHARMA, MEMBER, 1EEE

Abstract —The quasi-static capacitance of an elliptic microstrip ring
resonator is evaluated with the spectral domain technique. The effect of
fringing of fields associated with the structure is determined using this
capacitance value in terms of the effective eccentricities of the inner and
outer ellipses, the effective values of the ratio of the semimajor and
semiminor axes, and the effective dielectric constant. The resonant
frequency of the even TM ;o mode, calculated utilizing them, is in good
agreement with the experiment. Mode charts for the dominant and higher

order even and odd TM ;10 resonance modes are also presented.
3

I. INTRODUCTION

Of the various microstrip resonant structures, those with sim-
ple geometrical shapes have emerged as the most popular reso-
nant structures in practice. Rectangular, circular disk, and ring
resonators, therefore, find extensive applications in oscillators,
filters, and circulators. On the other hand, microstrip resonant
structures of complex geometrical shapes have not received much
attention to date. This mainly is due to inadequate design infor-
mation available in the literature.

The resonant structures of complex geometrical shapes, in
general, provide better performance and greater flexibility in the
design. This has been demonstrated for the equilateral triangular
microstrip element and the regular hexagonal element in filter
and circulator applications [1]-[3]. Although some preliminary
results are available, they must be analyzed in greater detail so
that they can be meaningfully incorporated into the design of
MIC components. With this objective in mind, several different
geometrical shapes have recently been investigated in detail
(21-[6].

The elliptic microstrip disk and ring resonators have the poten-
tial for being used in practical microwave integrated circuits. The
elliptic microstrip disk [6]-[8] can be utilized in harmonic multi-
pliers and parametric amplifiers, since there exists a harmonic
relationship between mode frequencies. It also can be used as an
antenna element to achieve circular polarization [9]. The elliptic
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microstrip ring resonator {10}, [11] is a general structure which
reduces to the elliptic disk, circular disk, or ring resonator with
an appropriate choice of the structural parameters.

The purpose of this paper, therefore, is to present a quasi-static
analysis of an elliptic microstrip ring resonator. The capacitance
of the structure is first determined with the spectral domain
technique. It is utilized then to quantitatively assess the effect of
fringing of the fields associated with the edges in terms of the
effective parameters of the structure. The resonant frequency is
determined, taking into account the effective values of the ec-
centricities of the inner and outer ellipses, the effective values of
the ratio of the semimajor and semiminor axes, and the effective
dielectric constant. The resonant frequency obtained with this
theory is verified with the experiments. Mode charts for the
dominant and higher order even and odd resonance modes are
also presented.

II. ANALYSIS

The elliptic microstrip ring resonator on a dielectric substrate
of thickness d above the ground plane is shown in Fig. 1 along
with the elliptic coordinate system &, 7, and z. The outer ellipse
with eccentricity e, and the inner ellipse with eccentricity e; form
a confocal elliptic microstrip ring resonator. The focal distance
between the focal points. F and' F’ is 24, and is related to other
structural parameters via the relation

2h=2(1060=2(11€’1 (1)

where a, and 4, are the semimajor axes of the outer and inner
ellipses, respectively. Alternatively, the eccentricities e, and e,
also are expressed as

e0=v1—(b0/a0)2 (2)
er=V1-(b,/a,) 3)

where by and b, are the semiminor axes of the outer and inner
ellipses, respectively. The axial coordinates of the outer and inner
ellipses are £, and £;. |

The analysis of the elliptic microstrip ring resonator is per-
formed with the quasi-static formulation of the spectral domain
technique [12]. This technique has been extensively utilized in the
evaluation of the discontinuity capacitance of various microstrip
structures. From the quasi-static capacitance, the effective param-
eters of an equivalent structure with perfect magnetic walls can
be calculated. The resonant frequency then is calculated for this
structure. It has been observed for various structures [3]-[6] that
this procedure is capable of providing fairly accurate resonant
frequency within the range of quasi-static approximation.

Since the mathematical formulation of this structure is essen-
tially similar to the one given earlier by Sharma and Bhat [6], we
shall present only a terse mathematical description in the nota-
tion of [6].

The two-dimensional Fourier transform of the potential with
respect to x- and y-axes is defined via the equation

dB.2)=[" [" o(xy. ) Day  (4)

and

where the potential function ¢(x, y, z) satisfies Poisson’s equa-
tion for a given charge density distribution p(x, y) on the struc-
ture

Vo(x.y.2)= - ta(x)8(z—d).  (5)

Fig. 1. A confocal elliptic microstrip ring resonator.

_ With the application of boundary conditions, the potential
¢(a,B,d) and the charge density p(a,B) at the interface are
related by

¢(a,B,d)=G(a,B,d)p(a,B) (6)

wheré G(a,B, d) is the Fourier transform of the Green’s func-
tion. This is expressed as

G(a,B,d)=[egy(1+¢,cothyd)] ™ @)

with
y=(a?+p%)"", O ®
The charge density distribution is expressed in terms of basis

functions p,(x, y) with unknown coefficients d,,. It is written in
the Fourier transform domain as

N
pla,B)= ;dnﬁn(a,ﬁ) (9)

The unknown coefficients d,, in (9) are determined from the
solution of the matrix equation [3]

N -
2 d(G(a,B,d)p,(a,B),0%(e, B))

n=1

= (2n)(8i(x,y,d),0,(x,5)) (10)

which is derived with the application of Galerkin’s method and
Parseval’s theorem. The capacitance of the structure is then
obtained as

N
c= ZldnfE/pn(x,y)dxdy. (11)
"=

The charge density distribution function in (9) requires the.
Fourier transform of various basis functions p,(x, y). It can be
easily deduced for microstrip structures of simple geometrical
shapes. However, in general, for microstrip structures of complex
shapes, it cannot be expressed easily in an analytical form. This
invariably leads to considerable computation time required for
the solution. Therefore, it is prudent to restrict the number of
basis functions to a few to retain the numerical efficiency of this
technique. In the present case, however, we shall assume only a
uniform charge density distribution on the elliptic ring. At this
point, it should be noted that the first-order variation in the
representation of the charge density results in the second-order
variation in the capacitance due to the variational nature of this
technique [12]. Thus we write '

1 E
nx)={5 ¢

clsewhere

(12)
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where the region E is the surface bounded by the following
equations:

x*/ag + y*/b5 =1
x*/al + y*/bi =1. (13)

The Fourier transform of (12), obtained using the procedure
given in [13], is written as

2 3
ﬁ(a,B)=wa0boll~%%+%%—%%+ }
2 3
_walblll—%{%+i—2—2%?—%% ]
(14)
with
po= (e} +B°b3) @15)
and ‘
p1= (e + B78}). (16)

The Fourier transform of the charge density given by (14) is
utilized to evaluate the unknown coefficient d,(with N =1) from
the solution of the algebraic equation (10). The capacitance C of
the structure is then calculated by (11). This is normalized with
respect to the parallel-plate capacitance of the structure C; so
that

Cv=C/C (17)

where
Co = €€, m(aohy — arby)/d. (18)

The quasi-static resonant frequency is computed utilizing the
concept of the effective dielectric constant (¢.;;) and the effective
parameters of the structure. The effective dielectric constant is
given by the ratio of the capacitance of the structure with the
dielectric substrate to that with the dielectric substrate removed.
That is

€et = %_—(”0&‘)‘ . (19)
€=¢g)

The effective parameters of the structure can be expressed in
terms of the quasi-static capacitance. To that end, the area of the
elliptic ring is written as

A=2xh*(sinh2¢, —sinh2£,). (20)

Consider now a hypothetical elliptic ring resonator having no
fringe effects. Let the structural parameters in the notation of
Fig. 1 be ay, b}, ai, and bj. The capacitance of this structure is
then given simply by

Cy=eoe,m(apby — aiby)/d. (21)

The effective parameters can now be deduced when C,, equals

C, which is the value of the capacitance derived using (11). Thus

c, (apby—aiby)

CN:E; - (agby — arby) @2)
which can be written using (20) as
B cosh(&,+ £, )sinh (&, — )
¥ Couh (£ + &) sinh (0 ) )
We now define that
b= (60t &) =3 (&) (24)

and
=3 (BoE) =2 (8- &) +AE=E,+AE  (29)
which reduces (23) to
Ag = 7 sinh ™ [ Cysinh2€,] &, (26)
The corrected values of the axial coordinates are then
§o=§o+ A8
& =&AL 27)

The transverse magnetic (TM) fields existing on an elliptic
microstrip ring resonator are dual of the transverse electric (TE)
fields in an elliptic coaxial waveguide whose cross section is the
same as that of the resonator shape. The eigenvalue equations for
determining the cutoff wavenumbers of the TE and TM modes in
an elliptic coaxial waveguide have been presented by Brackel-
mann [14]. The relevant equations for the TM modes in an
elliptic microstrip resonator are as follows.

Even modes, TM,,,,,,,*
Ce;n (60’ qcmn)Feyr;z(gls qcmn)

- Cer,n(glf qcmn)Feyr;l(go’ ‘Icmn) =0 (28)
0dd modes, TM,,, !

Se/,n (£0 ’ qsmn)Geyr;z(gl’ qscm)

- SE,/”(fl, qsmn)Geyr;l(gos qsmn) =0 (29)

where Ce,, (£, q) and Se, (&, q) are the even and odd modified
Mathieu functions of the first kind and order m. Fey,,(£, ¢) and
Gey,, (&, q) are the even and odd modified Mathieu functions of
the second kind and order m [15]. The primes in (28) and (29)
denote the derivatives with respect to the argument §.

The wavenumber for the radial resonance is determined from
the numerical solution of (28) and (29) for the nth parametric
ZEIO g, for the even mode and g;,,,, for the odd mode. Thus

fo= g

— (30)
Ty €ett Bo€0

where f, is the resonant frequency, c is the velocity of light, and ¢

is equal to q,,,, and ¢,.., for the even and odd modes,

respectively.

III. NUMERICAL RESULTS

Following the foregoing analysis, a computer program was
developed to solve the algebraic equation (10) in the spectral
domain. The Fourier transform of the charge density, as given in
(14), was evaluated with an accuracy of four significant digits or
more. The integral on the left-hand side of (10) was evaluated as
an iterated multiple integral using Gaussian quadrature. The
convergence of the integral was also checked for various values of
the structural parameters.

The capacitance of the structure then was evaluated with (11)
for various values of the eccentricity of the outer ellipse and the
ratio of the semiminor axes b, /b,. The normalized capacitance
Cy as a function of d /a, obtained using (17) are depicted in Fig.
2. In Fig. 2(a), it is shown for a fixed value of b, /b, = 0.4 and
various values of e, = 0.2 (0.2) 0.8. In Fig. 2(b), it is shown for a
fixed value of ey = 0.4 and b, /b, = 0.2 (0.2) 0.8. The variation of
Cy for various values of the dielectric constants €, =1.0, 2.22, 6.0,
and 10.2 is plotted in Fig. 2(c) for e, =0.4 and b, /b, = 0.4.
From these curves we observe that, for a fixed value of d /a, Cy
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Fig. 2. Normalized capacitance Cy as a function of d/ay (a) for ¢p=
0.2(0.2)0.8 with b, /by = 0.4, d = 0.0635 cm, and €, =10.2; (b) for b, /by =
0.2(0.2)0.8 with ey = 0.4, 4 = 0.0635 cm, and ¢, =10.2; (c) for ¢,=1.0, 2.22,
6.0, 10.2 with ey = 0.4, by /by = 0.4, and 4 = 0.0635 cm.

increases with an increase in e, or b, /b, when the other parame-
ters are kept fixed. Cy, decreases as €, increases for fixed vatues of
b, /by and e,.

From the capacitance value, the end effects associated with an
elliptic microstrip ring resonator are evaluated using the proce-
dure presented in the previous section. This effect is determined
in terms of 1) the effective values of the ratio of the semimajor
and semiminor axes, 2) the effective values of the eccentricities of
the inner and outer ellipses, and 3) the effective dielectric con-
stant. All these effective parameters are useful in the evaluation
of a theoretical value of the resonant frequency.
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af/aq as a function of d/ay (a) for ey = 0.2 (0.2)0.8 with b, /by = 0.4; (b)
for by /by = 0.2(0.2)0.8 with ey = 0.4. d = 0.0635 cm, and ¢, =10.2.

The variation of the effective value of the ratio of the semi-
major axes ag/a, is shown in Fig. 3(a) and (b) as a function of
d/a, for a fixed value of b, /b, and e,, respectively. As seen
there, a; /a, decreases with an increase in either e, or b, /by.

The variation of the effective dielectric constant (e.4) as a
function of d /a, is shown in Fig. 4(a) for different values of e,
and in Fig. 4(b) for different values of b,/b,. The effective
dielectric constant is seen to decrease with an increase in d /a,,. It
also decreases with an increase in either e, or b; /b,. For very
small values of d/ag, €4 is observed to be close to the static
valuee,. .

The effective eccentricities of the inner and outer ellipses are
plotted in Fig. 5(a) and (b), respectively, for e, =0.2 (0.2) 0.8,
and d/a,=0.05 and 0.1. As b, /b, is increased, ef increases
while e] decreases. The effective value of b7 /b, as shown in Fig.
5(@c) for b, /by=0.2 (0.2) 0.8, d/a;=10.05 and 0.1, is seen to
decrease with an increase in e,

The theoretical values of the resonant frequency in the even
and odd radial resonance modes require resonance wavenumbers
for the structure with effective parameters. This is evaluated by
first solving the eigenvalue equations (28) and (29) for the para-
IELLiC ZEIO Gepypp a0d gy, fOr given values of m, n, and p [16].
In Fig. 6(a)-(d), the mode characteristics of TM and TM

X N cmnp smnp
modes as a function of the eccentricity of the outer ellipse for
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Fig. 5. The effective value of the eccentricity of (a) the outer ellipse e, (b) the inner ellipse f as a
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the semiminor axes bi/b} as a function of the eccentricity of the outer ellipse e, for values of
d/ag=0.05,0.1, and b, /by = 0.2(0.2)0.8. d = 0.0635 cm, €, =10.2.

various values of the ratio of the semiminor axes are displayed for
m=1 to 4 with n=1 and p = 0. From these graphs we observe
that, when ¢, is equal to zero, the value of ka, is the same in the
even and odd resonance modes. For a confocal elliptic microstrip
ring resonator, e, equals zero implies that e; is also zero. It
becomes a circular ring resonator with b, /b, as the ratio of the
inner to outer radius. As e is further increased, ka, increases for
the even TM,,,,,, modes. Depending on the value of b, /by, it
either decreases or increases in the odd TM,,,,, modes. In all
cases, however, increasing the ratio of the semiminor axes b, /b,
for a fixed value of e, causes a decrease in the value of ka,.
Furthermore, ka, in the even TM,,,,, mode is always greater
than the corresponding value in the odd TM,,,, mode for
eo > 0. This leads us to conclude that the odd TM ;;;, mode is the

dominant mode for the elliptic microstrip resonator. It is con-
sistent also with the results presented by Brackelmann [14] for the
even and odd TE mode cutoff wavenumbers of a coaxial wave-
guide of elliptic cross section.

The current distribution on the elliptic microstrip ring resona-
tor is deductively derived from the electromagnetic fields existing
in the coaxial elliptic waveguide [14]. It is depicted in Fig. 7(a)
and (b) for the even TM ;4 and odd TM;,, modes, respectively.
As shown there, the even mode is obtained when the resonator is
excited along the major axis (n = 0°), while the odd mode is
obtained when it is excited along the minor axis (.= 90°).

Using the effective values of the structural parameters, the
theoretical resonant frequency was evaluated and compared with
the experiment. The elliptic microstrip ring resonators were



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO, 2, FEBRUARY 1984 217

20

19— by/bg

| | |
66 o1 02 03 04 08 06 07 08 08 10

ECCENTRICITY, o
@
52
50+ by /bo
48
46
44
1 42
9
£ 40
38
36
34
3.2
sob—L 14t 1 1 1 1 1
0001 02 03 04 03 06 O7T 08 09 10
ECCENTRICITY , ¢ —~
©

20 | 1 1 | 1 | i 1 I
00 01 02 03 04 035 06 07 08 09 10

ECCENTRICITY, og —
®)

6.2

60

58

56

54

52

kag —=

50

4.8

46

44

42

| S N N | i ] | I
0001 02 03 04 05 06 07 08 09 10

ECCENTRICITY, ¢y —=

40

)

Fig. 6. Mode charts for the confocal elliptic microstrip resonator in the even TM (punp and odd

TM;,, modes; kag as a function of eq. by /by is a variable.
forn=1l,p=0and (@ m=1; ) m=2; () m=3; (d) m=4.

fabricated on Epsilam-10 (e, =10.2) substrates. The resonators
were coupled through a 50-Q microstripline along the semimajor
axis. The coupling to the resonator was adjusted to an optimum
value such that the influence of the coupling gap on the resonant
frequency was negligible. This value of the coupling gap then was
used throughout the experiments. Due to this excitation, only the
even TM 4, mode was excited. The theoretical and experimental
verification of the resonant frequency of this mode was per-
formed for two cases. In the first case, the semimajor axis @ was

increased from 0.2 to 0.7 cm for a fixed value of ey = 0.5 and °

b, /by = 0.5. In the second case, for each value of the eccentricity
of the outer ellipse ey = 0.2 to 0.8, the ratio of semiminor axes
b, /b, was varied between 0.2 to 0.8 in steps of 0.2. The theoret-
ical resonant frequency for the even TM ,;, mode was calculated
from the parametric zero obtained using the effective parameters

smnp

e}, and b} /b}. The results for the first case are shown in Fig. 8(a),
and that of the second case are shown in Fig. 8(b). The experi-
mental values are also displayed there. The agreement between
theoretical and experimental resonant frequency was observed to
be within typically +2 percent in the frequency range of 2 to 12
GHz.

IV. CONCLUSIONS

In this paper, we have presented a complete analysis of the
elliptic microstrip ring resonator. This is a general resonant
structure which reduces to an elliptic disk when b, /b, =0, a
circular ring when e, =0, and a circular disk when both e; =0
and b, /b, = 0. The quasi-static capacitance of this structure was
obtained for various dielectric constants and structural parame-
ters. The effective dielectric constant was determined from the



218 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 2, FEBRUARY 1984

= RERE
x
xEx

caene

(@

(b)
Fig. 7. Field patterns on an elliptic microstrip ring resonator in (a) TM 9
mode, (b) TMj;;0 mode. oooo xxxx Electric field, —————— Magnetic Field,

Currents on the top plate.

ratio of the capacitance with and without the dielectric substrate.
A procedure for evaluating the end effects associated with the
fringing of fields in terms of the effective values of the eccentrici-
ties of the outer and inner ellipses, and the effective values of the
semimajor and semiminor axes, was presented. The resonant
frequency utilizing the effective structural parameters was found
also to agree within typically +2 percent up to about 12 GHz.
This is reasonable in view of the fabrication tolerances and the
variations in the value of the dielectric constant. Mode charts for
the confocal elliptic microstrip ring resonators were also pre-
sented for the first four even and odd radial resonance modes. It
is believed that these results would provide much-needed infor-
mation in the design of elliptic microstrip ring resonators.
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