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Fig. 10. RF power for the uyection-locked case (Jdc = 646 A/cm2, ‘r= 8 KS,
IL= 0.341 A, P,n=l.5 W and~o =10 GHz).

RF power generated by the diode is

PR~ = – ; G#& (7)

where G~ = Re { Y~ ( V~~)}. The expressions in (6) and (7) are

plotted in Fig. 9. It is seen that as lL is varied from 300 A/cmz

(0.39 A) to 800 A/cm* (1.04 A), the RF power first increases,

reaches a maximum for IL = 450 A/cm2 (0.585 A), and then

decreases. (P~~ in Fig. 9 is the RF power at the start of the pulse,

whereas the RF power in Table II is the average over the 1.5-ps

pulse width.) Below ILs 285 A/cm* (0.370 A, P,. = 1.76 W), it is

anticipated from Fig. 9 that locking cannot occur except perhaps

at very low P~~ values. (It must also be investigated whether the

operating points in Fig. 9 are stable.) This expectation is borne

out by the simulation in Fig. 10 for which P,n = 1.5 W (lL = 0.341

A). The diode does not lock until it has heated up to 477”K, so

that the curves in Fig. 9 are no longer applicable. As the diode

continues to heat up, the generated RF power gradually increases

to 14.9 W. This behavior is consistent with the experimental

results, since for Pi. much below 2 W the locking at 10 GHz was

not found to be stable.

VI. CONCLUSIONS

It has been shown that a large-signal IMPATT diode simula-

tion program employing the drift-diffusion approximation in

conjunction with a quasi-static transient simulation can accu-

rately predict experimentally observed behavior at 10 GHz, both

for the free-running and injection-locked cases. These programs

may be used for diode and circuit design at higher frequencies

where measurements become more difficult. However, it may be

necessary to include relaxation effects in the IMPATT diode

simulation since it has been shown that these effects become

significant at low millimeter-wave frequencies [7].
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Spectral Domain Analysis of an Elliptic Microstrip

Ring Resonator

ARVIND K. SHARMA, NIENtBER,lEEE

Abstract —The quasi-static capacitance of an elliptic microstrip ring

resonator is evaluated with the spectral domain technique. The effect of

fringing of fields associated with the structure is determined using this

capacitance value in terms of the effective eccentricities of the inner and

outer ellipses, the effective vahses of the ratio of the semimajor and

semiminor axes, and the effective dielectric constant. The resonant

frequency of the even TM .110 mode, calculated utifiiing them, is in good

agreement with the experiment. Mode charts for the dominant and higher

order even and odd TM AO resonance modes are also presented.
s

I. INTRODUCTION

Of the various microstrip resonant structures, those with sim-

ple geometrical shapes have emerged as the most popular reso-

nant structures in practice. Rectangular, circular disk, and ring

resonators, therefore, find extensive applications in oscillators,

filters, and circulators. On the other hand, microstnp resonant

structures of complex geometrical shapes have not received much

attention to date. This mainly is due to inadequate design infor-

mation available in the literature.

The resonant structures of complex geometrical shapes, in

general, provide better performance and greater flexibility in the

design. This has been demonstrated for the equilateral triangular

microstrip element and the regular hexagonal element in filter

and circulator applications [1]–[3]. Although some preliminary

results are available, they must be analyzed in greater detail so

that they can be meaningfully incorporated into the design of

MIC components. With this objective in mind, several different

geometrical shapes have recently been investigated in detail

[2]-[6].

The elliptic rnicrostnp disk and ring resonators have the poten-

tial for being used in practical microwave integrated circuits. The

elliptic microstrip disk [6]–[8] can be utilized in harmonic multi-

pliers and parametric amplifiers, since there exists a harmonic

relationship between mode frequencies. It also can be used as an

antenna element to achieve circular polarization [9]. The elliptic

Manuscript received July 13, 1983; revrsed September 19, 1983
The author N with the Microwave Technology Center, RCA Laboratories,

David Sarnoff Research Center, Princeton, NJ 08540.

0018-9480/84/0200-0212$01.00 01984 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 2, FEBRUARY 1984 213

microstrip ring resonator [10], [11] is a general structure which

reduces to the elliptic disk, circular disk, or ring resonator with

an appropriate choice of the structural parameters.

The purpose of this paper, therefore, is to present a quasi-static

analysis of an elliptic microstnp ring resonator. The capacitance

of the structure is first determined with the spectral domain

technique. It is utilized then to quantitatively assess the effect of

fringing of the fields associated with the edges in terms of the

effective parameters of the structure. The resonant frequency is

determined, taking into account the effective values of the ec-

centricities of the inner and outer ellipses, the effective values of

the ratio of the semimajor and semiminor axes, and the effective

dielectric constant. The resonant frequency obtained with this

theory is verified with the experiments. Mode charts for the

dominant and higher order even and odd resonance modes are

also presented.

II. ANALYSIS

The elliptic microstrip ring resonator on a dielectric substrate

of thickness d above the ground plane is shown in Fig. 1 along

with the elliptic coordinate system &, q, and z. The outer ellipse

with eccentricity e. and the inner ellipse with eccentricity el form

a confocal elliptic microstrip ring resonator. The focal distance

between the focal points F and F’ is 2h, and is related to other

structural parameters via the relation

2h = 2aoeo = 2a1e1 (1)

where a. and al are the semimajor axes of the outer and inner

ellipses, respectively. Alternatively, the eccentricities eO and el

also are expressed as

e. =~= (2)

and

el=mzr (3)

where bO and bl are the semiminor axes of the outer and inner

ellipses, respectively. The axial coordinates of the outer and inner

ellipses are go and $1.

The analysis of the elliptic microstrip ring resonator is per-

formed with the quasi-static formulation of the spectral domain

technique [12]. This technique has been extensively utilized in the

evaluation of the discontinuity y capacitance of various microstrip

structures. From the quasi-static capacitance, the effective param-

eters of an equivalent structure with perfect magnetic walls can

be calculated. The resonant frequency then is calculated for this

structure. It has been observed for various structures [3]–[6] that

this procedure is capable of providing fairly accurate resonant

frequency within the range of quasi-static approximation.

Since the mathematical formulation of this structure is essen-

tially similar to the one given earlier by Sharma and Bhat ‘[6], we

shall present only a terse mathematical description in the nota-

tion of [6].

The two-dimensionaf Fourier transform of the potential with

respect to x- and y-axes is defined via the equation

6(~j B,z) =/m Jm +(x, y,z)ej(”’+~~)dxdy (4)
—~ —m

where the potential function @(x, y, z) satisfies Poisson’s equa-

tion for a given charge density distribution p ( x, y) on the struc-

ture

v2#(x, y,z)=–+p(x, y)8(z– d). (5)

T e (=(0

.-1- <=<,
2bo 2bl

J_T

,,0.

Fig. 1. A confocal elliptic microstrip ring resonator.

With the application of boundary conditions, the potential

&(a, p, d) and the charge density ~(a, ~) at the interface are

related by

+(a,/3, d)= G(a, p,d)j5(a, p) (6)

where 6( a, ~, d) is the Fourier transform of the Green’s func-

tion. This is expressed as

~(a, ~,d)=[coy(l +f,cothyd)]-’ (7)

with

y=(az+~y. (8)

The charge density distribution is expressed in terms of basis

functions p. (x, y) with unknown coefficients dn. It is written in

the Fourier transform domain as

(9)
~=1

The unknown coefficients dn in (9) are determined from the

solution of the matrix equation [3]

~ ;@(a,/3,d)~n(a, /3),& (a,/?))
~=1

= (2r)2(+i(x, ~,d), P~(x, ~)) (10)

which is derived with the application of Galerkin’s method and

Parseval’s theorem. The capacitance of the structure is then

obtained as

(11)

The charge density distribution function in (9) requires the

Fourier transform of various basis functions pn(x, y). It can be

easily deduced for microstrip structures of simple geometrical

shapes. However, in general, for microstrip structures of complex

shapes, it cannot be expressed easily in art analytical form. This

invariably leads to considerable computation time required for

the solution. Therefore, it is prudent to restrict the number of

basis functions to a few to retain the numericaf efficiency of this

technique. In the present case, however, we shall assume only a

uniform charge density distribution on the elliptic ring. At this

point, it should be noted that the first-order variation in the

representation of the charge density results in the second-order

variation in the capacitance due to the variational nature of this

technique [12]. Thus we write

(P1(X, Y)= ;:
on E

elsewhere
(12)
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where the region E is the surface bounded by the following

equations:

x2/a~ + y2/b~ =1

x2/a~+ y2/b~=l. (13)

The Fourier transform of (12), obtained using the procedure

given in [13], is written as

[

1 po 1 p; 1 P:
~(a, ~)=7raobo l–~fi+—– ———

. . 42 2!3! 433!4! +””” 1
[ 1 pl 1 p; 1 p:— ralbl l–z~+— —–— —

. . 42 2!3! 433!4! +””” 1
(14)

with

po=(a2a~+/?2bf) (15)

and

p1=(a2af+f32b~). (16)

The Fourier transform of the charge density given by (14) is

utilized to evaluate the unknown coefficient dl (with ,V = 1) from

the solution of the algebraic equation (10). The capacitance C of

the structure is then calculated by (11). This is normrdized with

respect to the parallel-plate capacitance of the structure Co so

that

C,v = c/co (17)

where

Co= coc,n(aobo – albl)/d. (18)

The quasi-static resonant frequency is computed utilizing the

concept of the effective dielectric constant (c ,ff ) and the effective

parameters of the structure. The effective dielectric constant is

given by the ratio of the capacitance of the structure with the

dielectric substrate to that with the dielectric substrate removed.

That is

C(c = cot,)
ceff=C(C=60) “

(19)

The effective parameters of the structure can be expressed in

terms of the quasi-static capacitance. To that end, the area of the

elliptic ring is written as

A=27rh2(sinh2~o -sinh2.$1). (20)

Consider now a hypothetical elliptic ring resonator having no

fringe effects. Let the structural parameters in the notation of

Fig. 1 be a~, b~, a~, and b~. The capacitance of this structure is

then given simply by

Ch = cocrr(a~b~ – a(bl)/d. (21)

The effective parameters can now be deduced when C~ equals

C, which is the value of the capacitance derived using (11). Thus

CN=~=(a6bb-afb;)
Co (aobo - albl)

which can be written using (20) as

c = cosh(~o +gl)sinh(~o-~l)

N cosh(.$o +fl)sinh(fo-. $l)

We now define that

(22)

(23)

(24)

which reduces (23) to

A.$ = ~sint-l [CNsinh2.$d]-tJ. (26)

The corrected values of the axial coordinates are then

~o=&o+A$

&=(l-A(. (27)

The transverse magnetic (TM) fields existing on an elliptic

microstnp ring resonator are dual of the transverse electric (TE)

fields in an elliptic coaxial waveguide whose cross section is the

same as that of the resonator shape. The eigenvalue equations for

determining the cutoff wavenumbers of the TE and TM modes in

an elliptic coaxial waveguide have been presented by Brackel-

mann [14]. The relevant equations for the TM modes in an

elliptic microstrip resonator are as follows.

Even modes, TMC~.P:

ce~(~o, qcmn)~ey;($~, 4cmn)

- CeL(&, q~~~)~eA($o, q.~.) = O (28)

Odd modes, TM,~.P:

se~ (.$’0, q,m.)Gey;(&> q..~)

– Se4(&l, q,~n)Gey~(&o, qsmn )= O (29)

where Ce~ ( f, q) and Se~ ( C, q) are the even and odd modified

Mathieu functions of the first kind and order m. FqY~(.$, q) and

Geym ( g, q) are the even and odd modified Mathieu functions of

the second kind and order m [15]. The primes in (28) and (29)

denote the derivatives with respect to the argument f.

The wavenumber for the radial resonance is determined from

the numerical solution of (28) and (29) for the n th parametric

zero qcmnp for the even mode and q,~HP for the odd mode. Thus

fo=- (30)

+=ahek

where ~. is the resonant frequency, c is the velocity of light, and q

is equal to qC~nP and q~M~P for the even and odd modes,

respectively.

III. NUMERICAL RESULTS

Following the foregoing analysis, a computer program was

developed to solve the algebraic equation (10) in the spectral

domain. The Fourier transform of the charge density, as given in

(14), was evaluated with an accuracy of four significant digits or

more. The integral on the left-hand side of (10) was evaluated as

an iterated multiple integral using Gaussian quadrature. The

convergence of the integral was also checked for various values of

the structural parameters.

The capacitance of the structure then was evaluated with (11)

for various values of the eccentricity of the outer ellipse and the

ratio of the semiminor axes bl /b.. The normalized capacitance

CN as a function of d/s. obtained using (17) are depicted in Fig.

2. In Fig. 2(a), it is shown for a fixed value of bl/bo = 0.4 and

various values of e. = 0.2 (0.2) 0.8. In Fig. 2(b), it is shown for a

fixed value of e. = 0.4 and bl/bo = 0.2 (0.2) 0.8. The variation of

CN for various values of the dielectric constants C, = 1.0,2.22,6.0,

and 10.2 is plotted in Fig. 2(c) for e.= 0.4 and bl/bo = 0,4,

From these curves we observe that, for a fixed value of d/so, CN



IEEETRANSACTIONSON MICROWAVETHEORYAND TECHfifQUES,VOL. MTT-32, NO, 2, FEBRUARY1984
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Fig. 2. Normalized capacitance C~ as a function of d/s. (a) for e.=
0.2(0.2)0.8 with bl/bo = 0.4, d = 0.0635 cm, and C,= 10.2; (b) for bl/bo =

0.2(0.2)0.8 with e.= 0.4, d = 0.0635 cm, and c,= 10.2; (c) for c, = 1.0, 2.22,
6.0, 10.2 with Co= 0.4, bl/bo = 0.4, and d = 0.0635 cm.

increases with an increase in e. or bl /bO when the other parame-

ters are kept fixed. CN decreases as c, increases for fixed values of

bl/bO and eo.

From the capacitance value, the end effects associated with an

elliptic rnicrostrip ring resonator are evaluated using the proce-

dure presented in the previous section. This effect is deteqnined

in terms of 1) the effective values of the ratio of the semimajor

and semiminor axes, 2) the effective values of the eccentricities of

the inner and outer ellipses, and 3) the effective dielectric con-

stant. All these effective parameters are useful in the evaluation

of a theoretical value of the resonant frequency.
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Fig. 3. Variation of the effective value of the ratio of tde sernimajor axes
a6/aO as a function of d/s. (a) for e. = 0.2 (0.2)0.8 with bl/bo = 0.4; (b)
for bl/bo = 0.2(0.2)0.8 with e. = 0.4. d= 0.0635 cm, and 6,= 10.2.

The variation of the effective value of the ratio of the semi-

major axes a~ /a. is sho~ in Fig. 3(a) and (b) as a function of

d/aO for a fixed value of bl/bO and eo, respectively. As seen

there, a~ /a. decreases with an increase in either e. or bl/bO.

The variation of the effective dielectric constant (ceff ) as a

function of d/s. is shown in Fig. 4(a) for different values of eo,

and in Fig. 4(b) for different values of bl /bO. The effective

dielectric constant is seen to decrease with an increase in d/so. It

also decreases with an increase in either eO or bl/bO. For very

small values of d/s., c,ff is observed to be close to the static

value c~.

The effective eccentricities of the inner and outer ellipses are

plotted in Fig. 5(a) and (b), respectively, for eO = 0.2 (0.2) 0.8,

and d/a ~ = 0.05 and 0.1. As bl/bo is increased, e~ increases

while e{ decreases. The effective value of b; /br$, as shown in Fig.

5(c) for bl/bo = 0.2 (0.2) 0.8, d/s. = 0.05 and 0.1, is seen to

decrease with an increase in eO.

The theoretical values of the resonant frequency in the even

and odd radial resonance modes require resonance wavenumbers

for the structure with effective parameters. This is evaluated by

first solving the eigenvalue equations (28) aqd (29) for the para-

metric zero qCmnP and q$~nP for given values of m, n, and p [16].

In Fig. 6(a)–(d), the mode characteristics of TMc~.P and TM,~.P

modes as a function of the ec~entricity of the outer ellipse for
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bl/bO = 0.2(0.2)0.8 with e. = 0.4. d = 0.0635 cm, and c, = 10.2.
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Fig. 5. The effective value of the eccentricity of (a) the outer ellipse e~, (b) the inner ellipse e{ as a
function of bl/bo for vahres of d/s. = 0.05,0.1, and e.= 0.2(0.2)0.8, aud (c) the effective ratio of
the serniminor axes b~/b~ as a function of the eccentricity of the outer ellipse e. for vahres of
d/s. =0.05, 0.1, and bl/bo = 0,2(0.2)0.8. d = 0.0635 cm, C,= 10.2.

various values of the ratio of the semiminor axes are disrdaved for dominant mode for the elli~tic microstrip resonator. It is con-. .
m = 1 to 4 with n = 1 and p = O. From these graphs we observe

that, when e. is equal to zero, the value of kao is the same in the

even and odd resonance modes. For a confocal elliptic microstrip

ring resonator, e. eqqals zero implies that el is also zero. It

becomes a circular ring resonator with bl/bO as the ratio of the

inner to outer radius. As e. is further increased, ka ~ increases for

the even TMC~.P modes. Depending on the value of bl/bO, it

either decreases or increases in the odd TM,~~P modes. In all

cases, however, increasing the ratio of the semiminor axes bl /bO

for a fixed value of eO causes a decrease in the value of kao.

Furthermore, kao in the even TMC~~P mode is always greater

than the corresponding value in the odd TM,~.P mode for

e. >0. This leads us to conclude that the odd TM,IIO mode is the

.
sistent also with the results presented by Brackelmann [14] for the

even and odd TE mode cutoff wavenumbers of a coaxial wave-

guide of elliptic cross section.

The current distribution on the elliptic microstnp ring resona-

tor is deductively derived from the electromagnetic fields existing

in the coaxial elliptic waveguide [14]. It is depicted in Fig. 7(a)

and (b) for the even TM ,Ilo and odd TM,IIO modes, respectively.

As shown there, the even mode is obtained when the resonator is

excited along the major axis (q = 00), while the odd mode is

obtained when it is excited along the minor axis (~.= 900).

Using the effective values of the structural parameters, the

theoretical resonant frequency was evaluated and compared with

the experiment. The elliptic microstrip ring resonators were
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Fig. 6. Mode charts for the confoeal elfiptic microstrip resonator in the even TM
TM,.nP modes; kao as a function of eo. bl/bo is a variable. —
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forn=l, p= Oand(a)m=l; (b)m=2; (c)m= 3;(d) nr=4.
cmnp sln”p

fabricated on Epsilam-10 (c, = 10.2) substrates. The resonators efi and b{ /b:. The results for the first case are shown in Fig. 8(a),

were coupled through a 50-0 microstripline along the semimajor

axis. The coupling to the resonator was adjusted to an optimum

value such that the influence of the wupling gap on the resonant

frequency was negligible. This value of the coupling gap then was

used throughout the experiments. Due to this excitation, only the

even TMC110 mo&e was excited. The theoretical and experimental

verification of the resonant frequency of this mode was per-

formed for two cases. In the first case, the semirnajor axis a. was

increased from 0.2 to 0.7 cm for a fixed value. of e.= 0.5 and

bl/bO = 0.5. In the second case, for each value of the eccentricity

of the outer ellipse eO= 0.2 to 0.8, the ratio of semiminor axes

bl\bO was varied between 0.2 to 0.8 in steps of 0.2. The theoret-

ical resonant frequency for the even TMC110 mode was calculated

from the parametric zero obtained using the effective parameters

fid that-of ‘the second case are shown in Fig. 8(b). The experi-

mental values are also displayed there. The agreement between

theoretical and experimental resonant frequency was observed to

be within typically +2 percent in the frequency range of 2 to 12

GHz.

IV. CONCLUSIONS

In this paper, we have presented a complete analysis of the

elliptic microstnp ring resonator. This is a general resonant

structure which reduces to an elliptic disk when bl/bO = O, a

circular ring when e.= O, and a circular disk when both e.= O

and bl /bO = O. The quasi-static capacitance of this structure was

obtained for various dielectric constants and structural parame-

ters. The effective dielectric constant was determined from the
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Fig. 7. Field patterns on an elliptic ruicrostrip ring resonator in (a) TMCIIO
mode, (b) TM$IIO mode. 0000 xxxx Electric field, –––––– Magnetic Field,
——————Currents on the top plate.

ratio of the capacitance with and without the dielectric substrate.

A procedure for evaluating the end effects associated with the

fringing of fields in terms of the effective values of the eccentrici-

ties of the outer and inner ellipses, and the effective values of the

semimajor and semiminor axes, was presented. The resonant

frequency utilizing the effective structural parameters was found

also to agree within typically +2 percent up to about 12 GHz.

This is reasonable in view of the fabrication tolerances and the

variations in the value of the dielectric constant. Mode charts for

the confocal elliptic microstrip ring resonators were also pre-

sented for the first four even and odd radial resonance modes. It

is believed that these results would provide much-needed infor-

mation in the design of elliptic microstrip ring resonators.
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